Evolutionary games

Saul Mendoza-Palacios

Economic Studies Center of El Colegio de México

September, 2019

Kロト K伊 K

 $A \equiv 3$ and $B \equiv 3$

目

[Introduction](#page-2-0)

[Basic model](#page-2-0) [The replicator dynamics](#page-9-0)

[Evolutionary games](#page-12-0)

[The Asymmetric case](#page-12-0) [Nash Equilibrium and SUP](#page-13-0) [The symmetric case](#page-15-0)

[Examples](#page-19-0)

[Hawk-Dove game](#page-19-0) [Graduated risk game](#page-20-0)

[References](#page-22-0)

- ← ロ ▶ → ← 伊 \sim ∍ × э **B** \sim

B

 $2Q$

[Basic model](#page-2-0) [The replicator dynamics](#page-9-0)

Basic model

Let $I := \{1, 2, ..., n\}$ be the set of different species (or players). Each individual of the specie $i \in I$, can choose a single element in a set of characteristic (strategies or actions) $A_i := \{a_i^1, a_i^2, ..., a_i^{K_i}\}$. Let n_i^h be the number of individuals of species *i* that chose the action $a_i^h \in A^i$, then the total number of individuals of the specie i is

$$
N_i = \sum_{h=1}^{K_i} n_i^h \qquad \forall \quad h = 1, ..., K_i, \quad i \in I.
$$
 (1)

The proportion of the population of the species i who chose the action a_i^h is given by the fraction

$$
\mu_i(a_i^h) = \frac{n_i^h}{N_i} \ge 0 \qquad \forall \quad h = 1, ..., K_i, \quad i \in I,
$$
 (2)

B

つへへ

and the distribution of the population in relation their actions is describe by the vector $\mu_i=(\mu_i^1,\mu_i^2,...,\mu_i^{\mathcal{K}_i})$ where $\mu_i^h:=\mu_i(\textit{\textbf{a}}_i^h)$ and $\sum_{h=1}^{\mathcal{K}_i}\mu_i^h=1.$

[Introduction](#page-2-0) [Evolutionary games](#page-12-0) [Examples](#page-19-0) [References](#page-22-0) [Basic model](#page-2-0) [The replicator dynamics](#page-9-0)

 $\overline{}$

Saul Mendoza-Palacios **[Evolutionary games](#page-0-0)**

Saul Mendoza-Palacios **[Evolutionary games](#page-0-0)**

[Basic model](#page-2-0) [The replicator dynamics](#page-9-0)

For each individual of the species i we assigned a payoff function $U_i: A \rightarrow R$ (where $A = A_1 \times ... \times A_n$) which explains its relationships with individuals of other species. The expected payoff of a individual of the species i who chose the action a_i^h and the other species have the population distributions $\mu_{-i} := (\mu_1, ..., \mu_{i-1}, \mu_{i+1}, ..., \mu_n)$ is given by

$$
J_i(a_i^h, \mu_{-i}) \tag{3}
$$

$$
= \sum_{k=1}^{K_1} \ldots \sum_{s=1}^{K_{i-1}} \sum_{m=1}^{K_{i+1}} \ldots \sum_{q=1}^{K_n} \mu_1^k \cdots \mu_{i-1}^s \mu_{i+1}^m \cdots \mu_n^q U_i(a_1^k, ..., a_{i-1}^s, \mathbf{a}_i^h, a_{i+1}^m, ..., a_n^q)
$$

and the expected payoff of the species i, when its population distribution is μ_i is given by

$$
J_i(\mu_i, \mu_{-i}) = \sum_{h=1}^{K_i} \mu_i^h J_i(a_i^h, \mu_{-i})
$$
 (4)

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

э

[Introduction](#page-2-0)

[Evolutionary games](#page-12-0) **[Examples](#page-19-0)** [References](#page-22-0) [Basic model](#page-2-0) [The replicator dynamics](#page-9-0)

 299 Ì.

[Basic model](#page-2-0) [The replicator dynamics](#page-9-0)

[Basic model](#page-2-0) [The replicator dynamics](#page-9-0)

The replicator dynamics

Suppose that given a net birth rate γ_i for species *i* the dynamic of the of the subpopulation h is given by the following equation

$$
\dot{n}_i^h(t) = [\gamma_i + J_i(a_i^h, \mu_{-i}(t))] n_i^h(t) \qquad \forall \quad h = 1, ..., K_i, \quad i \in I,
$$
 (5)

but we are interesting in the dynamic of the population distribution of each space. Since (by [2\)](#page-2-1)

$$
n_i^h = \mu_i^h N_i, \tag{6}
$$

we have

$$
\dot{\mu}_i^h = \frac{1}{N_i} [\dot{n}_i^h - \mu_i^h \dot{N}_i] \qquad \forall \quad h = 1, ..., K_i, \quad i \in I,
$$
 (7)

and also (by [1\)](#page-2-2)

$$
\dot{N}_i = \sum_{h=1}^{K_i} \dot{n}_i^h, \tag{8}
$$

then we obtain the replicator dynamics

$$
\dot{\mu}_i^h(t)=[J_i(a_i^h,\mu_{-i}(t))-J_i(\mu_i(t),\mu_{-i}(t))] \mu_i^h(t) \quad \forall \quad h=1,...,K_i, \quad i=1,...,n.
$$

[Basic model](#page-2-0) [The replicator dynamics](#page-9-0)

 299 Ì

[Basic model](#page-2-0) [The replicator dynamics](#page-9-0)

Pinzones de las Galápagos

 $2Q$

[The Asymmetric case](#page-12-0) [Nash Equilibrium and SUP](#page-13-0) [The symmetric case](#page-15-0)

Asymmetric Evolutionary Games

We shall be working with a special class of asymmetric evolutionary games which can be described as

$$
\left[I,\left\{\mathbb{P}(A_i)\right\}_{i\in I},\left\{J_i(\cdot)\right\}_{i\in I},\left\{\mu_i(t)=F_i(\mu(t))\right\}_{i\in I}\right],\qquad(10)
$$

where

- i) $I = \{1, ..., n\}$ is the finite set of players;
- ii) for each player $i \in I$ we have a set of mixed actions $\mathbb{P}(A_i)$ and a payoff function $J_i : \mathbb{P}(A_1) \times ... \times \mathbb{P}(A_n) \to \mathbb{R}$; and
- $iii)$ the replicator dynamics $F_i(\mu(t))$, where

$$
\dot{\mu}_i^h(t) = [J_i(a_i^h, \mu_{-i}(t)) - J_i(\mu_i(t), \mu_{-i}(t))] \mu_i^h(t) \quad \forall \quad h = 1, ..., K_i, \quad i = 1, ..., n.
$$
\n(11)

← ロ ▶ → イ 冊 ▶

モミト

∍

[The Asymmetric case](#page-12-0) [Nash Equilibrium and SUP](#page-13-0) [The symmetric case](#page-15-0)

Nash Equilibrium and SUP

Definition

Let Γ be a normal form game. A vector μ^* in $\mathbb{P}(A_1)\times...\times \mathbb{P}(A_n)$ is called an equilibrium if, for all $i \in I$,

$$
J_i(\mu_i^*,\mu_{-i}^*)\geq J_i(\mu_i,\mu_{-i}^*)\qquad\forall\mu_i\in\mathbb{P}(\mathcal{A}_i).
$$

Definition

A vector $\mu^*\in \mathbb{P} (A_1)\times \mathbb{P} (A_2)\times...\times \mathbb{P} (A_n)$ is called a strong uninvadable profile (SUP) if the following holds: There exists $\epsilon > 0$ such that for any μ with $\|\mu - \mu^*\|_{\infty} < \epsilon$, and every $i \in I$, $J_i(\mu_i^*, \mu_{-i}) > J_i(\mu_i, \mu_{-i})$ if $\mu_i \neq \mu_i^*$.

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$ \rightarrow

一个 医小

∍

[The Asymmetric case](#page-12-0) [Nash Equilibrium and SUP](#page-13-0) [The symmetric case](#page-15-0)

Principal results

- i) If $\mu^* = (\mu_1^*,...,\mu_n^*)$ is a Nash equilibrium of Γ , then μ^* is a critical point of the replicator dynamics, i.e., $F_i(\mu^*) = 0$ for all $i \in I$.
- ii) If μ^* be a SUP, then μ^* is an Nash equilibrium of Γ .
- iii) If μ^* be a SUP, then μ^* is asymptotically stable point of the replicator dynamics.
- iv) If μ^* is asymptotically stable point of the replicator dynamics, then it is a Nash equilibrium for Γ

← ロ ▶ → イ 冊 ▶

∍

[The Asymmetric case](#page-12-0) [Nash Equilibrium and SUP](#page-13-0) [The symmetric case](#page-15-0)

Symmetric evolutionary games

We can obtain a symmetric evolutionary game when $I := \{1, 2\}$ and the sets of actions and payoff functions are the same for both players, i.e., $A = A_1 = A_2$ and $U(a, b) = U_1(a, b) = U_2(b, a)$, for all $a, b \in A$. As a consequence, the sets of mixed actions and the expected payoff functions are the same for both players, i.e., $\mathbb{P}(A) = \mathbb{P}(A_1) = \mathbb{P}(A_2)$ and $J(\mu, \nu) = J_1(\mu, \nu) = J_2(\nu, \mu)$, for all $\mu, \nu \in \mathbb{P}(A)$. This kind of model determines the dynamic interaction of strategies of a unique species through the replicator dynamics

$$
\dot{\mu}^h(t) = [J(a^h, \mu(t)) - J(\mu(t), \mu(t))] \mu^h(t) \qquad \forall \quad h = 1, ..., m. \tag{12}
$$

Finally, as in [\(10\)](#page-12-1), we can describe a symmetric evolutionary games as

$$
[I = \{1, 2\}, \mathbb{P}(A), J(\cdot), \mu'(t) = F(\mu(t))]. \tag{13}
$$

4 ロ ト 4 御 ト 4 ヨ ト

[The Asymmetric case](#page-12-0) [Nash Equilibrium and SUP](#page-13-0) [The symmetric case](#page-15-0)

Evolutionary Game (EG)

$$
[I = \{1, 2\}, \mathbb{P}(A), J(\cdot), \mu'(t) = F(\mu(t))].
$$

Normal Form Game (NFG)

$$
[I=\{1,2\},\ \mathbb{P}(A),\ J(\cdot),]\,.
$$

 299

ŧ.

メロトメ部 トメミトメミト

[The Asymmetric case](#page-12-0) [Nash Equilibrium and SUP](#page-13-0) [The symmetric case](#page-15-0)

Definition

Let Γ_s be a symmetric normal form game. A vector μ^* in $\mathbb{P}(A)$ is called an Nash equilibrium strategy (NES) if (μ^*, μ^*) is a NE for Γ_s . That is

$$
J(\mu^*, \mu^*) \geq J(\mu, \mu^*) \quad \forall \mu \in \mathbb{P}(\mathcal{A}).
$$

Definition

A probability measure $\mu^* \in \mathbb{P}(A)$ is called an $\mathrm{strongly}\;$ uninvadable $\mathrm{strategy}$ (SUS) if there exists $\epsilon > 0$ such that for any μ with $\|\mu - \mu^*\| < \epsilon$, it follows that $J(\mu^*, \mu) > J(\mu, \mu)$.

∢ ロ ▶ (伊)

 \leftarrow \equiv \leftarrow - 4 重 ト ∍

[The Asymmetric case](#page-12-0) [Nash Equilibrium and SUP](#page-13-0) [The symmetric case](#page-15-0)

Principal results

- i) If μ^* is a NES of Γ_s , then μ^* is a critical point of the replicator dynamics, i.e., $F(\mu^*) = 0$.
- ii) If μ^* be a SUS, then μ^* is an NES of Γ .
- $iii)$ If μ^* be a SUS, then μ^* is asymptotically stable point of the replicator dynamics.
- iv) If μ^* is asymptotically stable point of the replicator dynamics, then it is a NES for Γ_s

- ← ロ ▶ → ← 伊

Ξ

メ ヨ ト

 $2Q$

∍

[Hawk-Dove game](#page-19-0) [Graduated risk game](#page-20-0)

Hawk-Dove game

For 0<V<C the symmetric Nash equilibrium is $\mu(H)=V/C$ and $\mu(D)=1-\frac{V}{C}$

[Hawk-Dove game](#page-19-0) [Graduated risk game](#page-20-0)

Graduated risk game

[Hawk-Dove game](#page-19-0) [Graduated risk game](#page-20-0)

Graduated risk game

The graduated risk game is a symmetric game (proposed by Maynard Smith and Parker 1976), where two players compete for a resource of value $v > 0$. Each player selects the "level of aggression" for the game. This "level of aggression" is captured by a number $x \in [0, 1]$, where x is the probability that neither player is injured, and $\frac{1}{2}(1-x)$ is the probability that player one (or player two) is injured. If the player is injured its payoff is $v - c$ (with $c > 0$), and hence the expected payoff for the player is

$$
U(x,y) = \{ \begin{array}{cc} \quad vy + \frac{v-c}{2}(1-y) & y > x, \\ \frac{v-c}{2}(1-x) & y \leq x, \end{array}
$$

where x and y are the "levels of aggression" selected by the player and her opponent, respectively.

If $v < c$, this game has the NES with the density function

$$
\frac{d\mu^*(x)}{dx} = \frac{\alpha - 1}{2} x^{\frac{\alpha - 3}{2}},\tag{14}
$$

イロメ イ押 トイヨ トイヨメ

つへへ

where $\alpha = \frac{c}{v}$.

References

- \triangleright Webb, James N. Game theory: decisions, interaction and Evolution. Springer Science & Business Media, 2007.
- \blacktriangleright Hofbauer, Josef, and Karl Sigmund. Evolutionary games and population dynamics. Cambridge university press, 1998.
- **In Sandholm, William H. Population games and evolutionary dynamics. MIT** press, 2010.
- ▶ Mendoza-Palacios, Saul, and Onésimo Hernández-Lerma. "A survey on the replicator dynamics for games with strategies in metric spaces." Pure and Applied Functional Analysis 4.3 (2019): 603-618.

 $2Q$

∍

э

メ ヨ ト