Evolutionary games

Saul Mendoza-Palacios

Economic Studies Center of El Colegio de México

September, 2019

・ロト ・四ト ・ヨト ・ヨト

æ

Introduction

Basic model The replicator dynamics

Evolutionary games

The Asymmetric case Nash Equilibrium and SUP The symmetric case

Examples

Hawk-Dove game Graduated risk game

References

< ∃⇒

Basic model The replicator dynamics

Basic model

Let $I := \{1, 2, ..., n\}$ be the set of different species (or players). Each individual of the specie $i \in I$, can choose a single element in a set of characteristic (strategies or actions) $A_i := \{a_i^1, a_i^2, ..., a_i^{K_i}\}$. Let n_i^h be the number of individuals of species *i* that chose the action $a_i^h \in A^i$, then the total number of individuals of the specie *i* is

$$N_i = \sum_{h=1}^{K_i} n_i^h \quad \forall \quad h = 1, ..., K_i, \quad i \in I.$$
(1)

The proportion of the population of the species i who chose the action a_i^h is given by the fraction

$$\mu_i(\boldsymbol{a}_i^h) = \frac{n_i^h}{N_i} \ge 0 \quad \forall \quad h = 1, ..., K_i, \quad i \in I,$$
(2)

A D N A B N A B N

★ 프 ▶ - 프

and the distribution of the population in relation their actions is describe by the vector $\mu_i = (\mu_i^1, \mu_i^2, ..., \mu_i^{K_i})$ where $\mu_i^h := \mu_i(a_i^h)$ and $\sum_{h=1}^{K_i} \mu_i^h = 1$.

Saul Mendoza-Palacios

Evolutionary games

Saul Mendoza-Palacios

Evolutionary games

Basic model The replicator dynamics

For each individual of the species *i* we assigned a payoff function $U_i : A \to R$ (where $A = A_1 \times ... \times A_n$) which explains its relationships with individuals of other species. The expected payoff of a individual of the species *i* who chose the action a_i^h and the other species have the population distributions $\mu_{-i} := (\mu_1, ..., \mu_{i-1}, \mu_{i+1}, ..., \mu_n)$ is given by

$$J_i(a_i^h, \mu_{-i}) \tag{3}$$

$$=\sum_{k=1}^{K_1}\dots\sum_{s=1}^{K_{i-1}}\sum_{m=1}^{K_{i+1}}\dots\sum_{q=1}^{K_n}\mu_1^k\cdots\mu_{i-1}^s\mu_{i+1}^m\cdots\mu_n^qU_i(a_1^k,\dots,a_{i-1}^s,a_i^h,a_{i+1}^m,\dots,a_n^q)$$

and the expected payoff of the species *i*, when its population distribution is μ_i is given by

$$J_{i}(\mu_{i},\mu_{-i}) = \sum_{h=1}^{\kappa_{i}} \mu_{i}^{h} J_{i}(a_{i}^{h},\mu_{-i})$$
(4)

イロト 不得 トイヨト イヨト 二日

Introduction

Evolutionary games Examples References Basic model The replicator dynamics

Introduction

Evolutionary games Examples References Basic model The replicator dynamics

Basic model The replicator dynamics

The replicator dynamics

Suppose that given a net birth rate γ_i for species *i* the dynamic of the of the subpopulation *h* is given by the following equation

$$\dot{n}_i^h(t) = [\gamma_i + J_i(a_i^h, \mu_{-i}(t))]n_i^h(t) \qquad \forall \quad h = 1, ..., K_i, \quad i \in I,$$
 (5)

but we are interesting in the dynamic of the population distribution of each space. Since (by 2) $\hfill \hfill \$

$$n_i^h = \mu_i^h N_i, \tag{6}$$

we have

$$\dot{\mu}_i^h = \frac{1}{N_i} [\dot{n}_i^h - \mu_i^h \dot{N}_i] \qquad \forall \quad h = 1, \dots, K_i, \quad i \in I,$$
(7)

and also (by 1)

$$\dot{N}_i = \sum_{h=1}^{K_i} \dot{n}_i^h,\tag{8}$$

then we obtain the replicator dynamics

$$\dot{\mu}_{i}^{h}(t) = [J_{i}(a_{i}^{h}, \mu_{-i}(t)) - J_{i}(\mu_{i}(t), \mu_{-i}(t))]\mu_{i}^{h}(t) \quad \forall \quad h = 1, ..., K_{i}, \quad i = 1, ..., n.$$

Introduction

Evolutionary games Examples References Basic model The replicator dynamics

lim $\mu(s) = \mu$

Introduction

Evolutionary games Examples References Basic model The replicator dynamics

Pinzones de las Galápagos

The Asymmetric case Nash Equilibrium and SUP The symmetric case

Asymmetric Evolutionary Games

We shall be working with a special class of asymmetric evolutionary games which can be described as

$$\left[I,\left\{\mathbb{P}(A_i)\right\}_{i\in I},\left\{J_i(\cdot)\right\}_{i\in I},\left\{\dot{\mu}_i(t)=F_i(\mu(t))\right\}_{i\in I}\right],$$
(10)

where

- i) $I = \{1, ..., n\}$ is the finite set of players;
- *ii*) for each player $i \in I$ we have a set of mixed actions $\mathbb{P}(A_i)$ and a payoff function $J_i : \mathbb{P}(A_1) \times ... \times \mathbb{P}(A_n) \to \mathbb{R}$; and
- iii) the replicator dynamics $F_i(\mu(t))$, where

$$\dot{\mu}_{i}^{h}(t) = [J_{i}(a_{i}^{h}, \mu_{-i}(t)) - J_{i}(\mu_{i}(t), \mu_{-i}(t))]\mu_{i}^{h}(t) \quad \forall \ h = 1, ..., K_{i}, \ i = 1, ..., n.$$
(11)

-∢ ⊒ ▶

э

The Asymmetric case Nash Equilibrium and SUP The symmetric case

Nash Equilibrium and SUP

Definition

Let Γ be a normal form game. A vector μ^* in $\mathbb{P}(A_1) \times ... \times \mathbb{P}(A_n)$ is called an equilibrium if, for all $i \in I$,

$$J_i(\mu_i^*, \mu_{-i}^*) \geq J_i(\mu_i, \mu_{-i}^*) \quad \forall \mu_i \in \mathbb{P}(A_i).$$

Definition

A vector $\mu^* \in \mathbb{P}(A_1) \times \mathbb{P}(A_2) \times ... \times \mathbb{P}(A_n)$ is called a strong uninvadable profile (SUP) if the following holds: There exists $\epsilon > 0$ such that for any μ with $\|\mu - \mu^*\|_{\infty} < \epsilon$, and every $i \in I$, $J_i(\mu_i^*, \mu_{-i}) > J_i(\mu_i, \mu_{-i})$ if $\mu_i \neq \mu_i^*$.

イロト イ押ト イヨト イヨト

э.

The Asymmetric case Nash Equilibrium and SUP The symmetric case

Principal results

- i) If $\mu^* = (\mu_1^*, ..., \mu_n^*)$ is a Nash equilibrium of Γ , then μ^* is a critical point of the replicator dynamics, i.e., $F_i(\mu^*) = 0$ for all $i \in I$.
- ii) If μ^* be a SUP , then μ^* is an Nash equilibrium of Γ .
- iii) If μ^* be a ${\rm SUP}$, then μ^* is asymptotically stable point of the replicator dynamics.
- iv) If μ^* is asymptotically stable point of the replicator dynamics, then it is a Nash equilibrium for Γ

イロト イボト イヨト イヨト

The Asymmetric case Nash Equilibrium and SUP The symmetric case

Symmetric evolutionary games

We can obtain a symmetric evolutionary game when $I := \{1, 2\}$ and the sets of actions and payoff functions are the same for both players, i.e., $A = A_1 = A_2$ and $U(a, b) = U_1(a, b) = U_2(b, a)$, for all $a, b \in A$. As a consequence, the sets of mixed actions and the expected payoff functions are the same for both players, i.e., $\mathbb{P}(A) = \mathbb{P}(A_1) = \mathbb{P}(A_2)$ and $J(\mu, \nu) = J_1(\mu, \nu) = J_2(\nu, \mu)$, for all $\mu, \nu \in \mathbb{P}(A)$. This kind of model determines the dynamic interaction of strategies of a unique species through the replicator dynamics

$$\dot{\mu}^{h}(t) = [J(a^{h}, \mu(t)) - J(\mu(t), \mu(t))]\mu^{h}(t) \quad \forall \quad h = 1, ..., m.$$
 (12)

Finally, as in (10), we can describe a symmetric evolutionary games as

$$[I = \{1, 2\}, \quad \mathbb{P}(A), \quad J(\cdot), \quad \mu'(t) = F(\mu(t))].$$
(13)

・ロト ・ 一下・ ・ ヨト・

The Asymmetric case Nash Equilibrium and SUP The symmetric case

Evolutionary Game (EG)

$$[I = \{1, 2\}, \mathbb{P}(A), J(\cdot), \mu'(t) = F(\mu(t))].$$

Normal Form Game (NFG)

$$[I = \{1, 2\}, \mathbb{P}(A), J(\cdot),].$$

Ξ.

The Asymmetric case Nash Equilibrium and SUP The symmetric case

Definition

Let Γ_s be a symmetric normal form game. A vector μ^* in $\mathbb{P}(A)$ is called an Nash equilibrium strategy (NES) if (μ^*, μ^*) is a NE for Γ_s . That is

$$J(\mu^*,\mu^*) \ge J(\mu,\mu^*) \quad \forall \mu \in \mathbb{P}(A).$$

Definition

A probability measure $\mu^* \in \mathbb{P}(A)$ is called an strongly uninvadable strategy (SUS) if there exists $\epsilon > 0$ such that for any μ with $\|\mu - \mu^*\| < \epsilon$, it follows that $J(\mu^*, \mu) > J(\mu, \mu)$.

(口) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**) < **(**)

_ ∢ ⊒ ▶

э.

The Asymmetric case Nash Equilibrium and SUP The symmetric case

Principal results

- i) If μ^* is a NES of Γ_s , then μ^* is a critical point of the replicator dynamics, i.e., $F(\mu^*) = 0$.
- *ii*) If μ^* be a SUS , then μ^* is an NES of Γ .
- iii) If μ^* be a SUS, then μ^* is asymptotically stable point of the replicator dynamics.
- iv) If μ^* is asymptotically stable point of the replicator dynamics, then it is a NES for Γ_s

イロト イ押ト イヨト イヨト

э.

Hawk-Dove game Graduated risk game

Hawk-Dove game

For 0<V<C the symmetric Nash equilibrium is $\mu(H)=V/C$ and $\mu(D)=1-V/C$

Graduated risk game

Graduated risk game

Saul Mendoza-Palacios

Evolutionary games

Hawk-Dove game Graduated risk game

Graduated risk game

The graduated risk game is a symmetric game (proposed by Maynard Smith and Parker 1976), where two players compete for a resource of value v > 0. Each player selects the "level of aggression" for the game. This "level of aggression" is captured by a number $x \in [0, 1]$, where x is the probability that neither player is injured, and $\frac{1}{2}(1-x)$ is the probability that player one (or player two) is injured. If the player is injured its payoff is v - c (with c > 0), and hence the expected payoff for the player is

$$U(x,y) = \{ \quad \begin{array}{cc} vy + \frac{v-c}{2}(1-y) & y > x, \\ \frac{v-c}{2}(1-x) & y \le x, \end{array}$$

where x and y are the "levels of aggression" selected by the player and her opponent, respectively.

If v < c, this game has the NES with the density function

$$\frac{d\mu^*(x)}{dx} = \frac{\alpha - 1}{2}x^{\frac{\alpha - 3}{2}},\tag{14}$$

_ ∢ ⊒ ▶

where $\alpha = \frac{c}{v}$.

References

- Webb, James N. Game theory: decisions, interaction and Evolution. Springer Science & Business Media, 2007.
- Hofbauer, Josef, and Karl Sigmund. Evolutionary games and population dynamics. Cambridge university press, 1998.
- Sandholm, William H. Population games and evolutionary dynamics. MIT press, 2010.
- Mendoza-Palacios, Saul, and Onésimo Hernández-Lerma. "A survey on the replicator dynamics for games with strategies in metric spaces." Pure and Applied Functional Analysis 4.3 (2019): 603-618.

- ₹ ₹ ►